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Abstract
Complete controllability is a fundamental issue in the field of control of quantum
systems, not least because of its implications for dynamical realizability of
the kinematical bounds on the optimization of observables. In this paper we
investigate the question of complete controllability for finite-level quantum
systems subject to a single control field, for which the interaction is of
dipole form. Sufficient criteria for complete controllability of a wide range
of finite-level quantum systems are established and the question of limits of
complete controllability is addressed. Finally, the results are applied to give a
classification of complete controllability for four-level systems.

PACS numbers: 0365, 0220

1. Introduction

Recent advances in laser technology have opened up new possibilities for laser control of
quantum phenomena such as control of molecular quantum states, chemical reaction dynamics
or quantum computers. The limited success of initially advocated control schemes based
largely on physical intuition in both theory and experiment has prompted researchers in recent
years to study these systems using control theory [1].

In [2] it was shown that the kinematical constraint of unitary evolution for non-dissipative
quantum systems gives rise to universal, kinematical bounds on the optimization of observables.
It has also been demonstrated that the theoretically and practically important question of the
dynamical realizability of these universal bounds depends on the complete controllability of
the system [3]. Although the issue of complete controllability of quantum systems has been
investigated before [4, 7], many open questions remain.

In this paper we study the question of complete controllability of finite-level quantum
systems driven by a single control, for which the interaction with the control field is determined
by the dipole approximation. For this kind of system the total Hamiltonian is of the form

H = H0 + f (t)H1 (1)
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whereH0 is the internal system Hamiltonian andH1 is the interaction Hamiltonian. For a finite-
level quantum system there always exists a complete orthonormal set of energy eigenstates |n〉
such that H0|n〉 = En|n〉 and thus we have

H0 =
N∑
n=1

En|n〉〈n| =
N∑
n=1

Enenn (2)

where emn ≡ |m〉〈n| is an N × N matrix with elements (emn)kl = δmkδnl and En are the
energy levels of the system. The En are real and hence H0 is Hermitian. The system is non-
degenerate provided that En = Em if and only if m = n. The energy levels can be ordered in
a non-increasing sequence, i.e., E1 � E2 � . . . � EN . Hence, the energy level spacing is

µn ≡ En+1 − En � 0 n = 1, . . . , N − 1. (3)

If µn = µ for 1 � n � N − 1 then we say the energy levels are equally spaced.
Expanding the interaction HamiltonianH1 with respect to this complete set of orthonormal

energy eigenstates |n〉 leads to

H1 =
N∑

m,n=1

dm,n|m〉〈n|

where dm,n are the transition dipole moments, which satisfy dm,n = d∗
n,m, where d∗

n,m is the
complex conjugate of dn,m. Thus, H1 is Hermitian. In the dipole approximation it is generally
assumed that only the terms dn−1,n and dn,n−1 corresponding to transitions between adjacent
energy levels are relevant, i.e., dm,n = 0 unless m = n ± 1. Thus, letting dn = dn,n+1 for
1 � n � N − 1 we have

H1 =
N−1∑
n=1

dn(|n〉〈n + 1| + |n + 1〉〈n|) =
N−1∑
n=1

dn(en,n+1 + en+1,n). (4)

If the any of the dn for 1 � n � N − 1 vanish then the system is decomposable, i.e.,
its dynamics can be decomposed into independent subspace dynamics, and therefore not
completely controllable [3]. Hence, we shall assume that

dn 
= 0 1 � n � N − 1 d0 = dN = 0. (5)

Note that we have introduced the non-physical d0 = dN = 0 for convenience.

2. Sufficient conditions for complete controllability

Definition 1. A quantum system H = H0 + f (t)H1 is completely controllable if every unitary
operator is dynamically accessible from the identity I in U(N) via a path γ (t) = U(t, t0) that
satisfies the equation of motion

ih̄
∂

∂t
U(t, t0) = (H0 + f (t)H1)U(t, t0) (6)

with initial condition U(t0, t0) = I .

In [4,5] it was shown that a necessary and sufficient condition for complete controllability
of the system H = H0 + f (t)H1 is that the Lie algebra L generated by the skew-Hermitian
matrices iH0 and iH1 is u(N), i.e., the Lie algebra of skew-Hermitian N × N matrices. Note
that we have u(N) = su(N)⊕u(1)where su(N) is the Lie algebra of traceless skew-Hermitian
matrices. A standard basis for su(N) is [6]

xnn′ ≡ enn′ − en′n

ynn′ ≡ i(enn′ + en′n)

hn ≡ i(enn − en+1,n+1)

(7)
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where 1 � n � N − 1, n < n′ � N and i = √−1. However, to show that L contains su(N),
it is sufficient to prove that xn,n+1, yn,n+1 ∈ L for 1 � n � N − 1 since all other basis elements
can be generated recursively from xn,n+1 and yn,n+1 for k > 1:

xn,n+k = [xn,n+k−1, xn+k−1,n+k]

yn,n+k = [yn,n+k−1, xn+k−1,n+k]

hn = [xn,n+1, yn,n+1].

If Tr(H0) = 0 then the Lie algebra L can be at most su(N) since H1 is traceless by definition.
Note that it can be shown that L = su(N) is sufficient for controllability for many practical
purposes [7]. On the other hand, if su(N) ⊂ L and Tr(H0) 
= 0 then iI can be obtained from
the diagonal element iH0 ∈ L since we can write

iH0 = [
N−1Tr(H0)

]
iI + H ′

0 (8)

where the traceless matrix H ′
0 must be a real linear combination of hn and hence in the Lie

algebra L. Thus, if su(N) ⊂ L and Tr(H0) 
= 0 then L = u(N).
For a system H = H0 + f (t)H1 with interaction Hamiltonian H1 of the form (4), it turns

out that it actually suffices to show that xp,p+1, yp,p+1 ∈ L for some p and dp−k 
= ±dp+k for
some k in order to conclude that L contains su(N).

Lemma 1. If x12, y12 ∈ L then xn,n+1, yn,n+1 ∈ L for 1 � n � N − 1. Similarly, if
xN−1,N , yN−1,N ∈ L then xn,n+1, yn,n+1 ∈ L for 1 � n � N − 1.

Proof. Given x12, y12 ∈ L, let V = iH1 and

h1 ≡ 2−1[x12, y12] = i(e11 − e22)

V (1) ≡ V − d1y12 =
N−1∑
n=2

dnyn,n+1.

Since dn 
= 0 for 1 � n � N − 1 we find that

d−1
2 [h1, V

(1)] = x23 ∈ L [x23, h1] = y23 ∈ L.
By repeating this procedureN−2 times, we can show that xn,n+1, yn,n+1 ∈ L for 1 � n � N−1.
Similarly, we can prove that given xN−1,N , yN−1,N ∈ L then all xn,n+1, yn,n+1 ∈ L for
1 � n � N − 1. �

Lemma 2. If there exists p with 2 � p � N − 2 such that xp,p+1, yp,p+1 ∈ L and k such that
dp−k 
= ±dp+k then xn,n+1, yn,n+1 ∈ L for 1 � n � N − 1.

Proof. Given xp,p+1, yp,p+1 ∈ L with 2 � p � N − 2 then

hp ≡ 2−1[xp,p+1, yp,p+1] = i(epp − ep+1,p+1) ∈ L.
Next let V = iH1 and evaluate

V (1)
p ≡ V − dpyp,p+1 =

∑
n 
=p

dnyn,n+1

X(1)
p ≡ d−1

p−1[hp, V
(1)
p ] = xp−1,p + η(1)p xp+1,p+2

Y (1)
p ≡ [X(1)

p , hp] = yp−1,p + η(1)p yp+1,p+2

H(1)
p ≡ 2−1[X(1)

p , Y (1)
p ] = hp−1 + (η(1)p )2hp+1

X(1)
p

′ ≡ 2−1[Y (1)
p ,H (1)

p ] = xp−1,p + (η(1)p )3xp+1,p+2

Y (1)
p

′ ≡ 2−1[H(1)
p , X(1)

p ] = yp−1,p + (η(1)p )3yp+1,p+2
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where η(1)p = dp+1/dp−1. Note that η(1)p is defined and non-zero since by hypothesis dn 
= 0
for 1 � n � N − 1. This leads to

(η(1)p )2X(1)
p − X(1)

p

′ = [(η(1)p )2 − 1]xp−1,p ∈ L
(η(1)p )2Y (1)

p − Y (1)
p

′ = [(η(1)p )2 − 1]yp−1,p ∈ L.
At this point we have to distinguish two cases.

Case 1. If η(1)p 
= ±1, i.e., dp−1 
= ±dp+1, then it is easy to see that xp−1,p, yp−1,p ∈ L
and hence hp−1 ≡ 2−1[xp−1,p, yp−1,p] ∈ L as well. Now we can proceed to show that
xp−2,p−1, yp−2,p−1 ∈ L:

V (2)
p ≡ V (1)

p − dp−1yp−1,p

X(2)
p ≡ d−1

p−2[hp−1, V
(2)
p ] = xp−2,p−1 ∈ L

Y (2)
p ≡ [X(2)

p , hp−1] = yp−2,p−1 ∈ L.
Repeating the last step p − 2 times shows that X(p−1)

p = x12 ∈ L and Y
(p−1)
p = y12 ∈ L and

hence xn,n+1, yn,n+1 ∈ L for 1 � n � N − 1 by lemma 1.

Case 2. If η(1)p = ±1, i.e., dp−1 = ±dp+1, then we only have X(1)
p

′ = xp−1,p ± xp+1,p+2 ∈ L
and Y (1)

p

′ = yp−1,p ± yp+1,p+2 ∈ L. However, we can now use a similar procedure as above to
obtain

V (2)
p ≡ V (1)

p − dp−1Y
(1)
p

′ =
∑

n
=p,p±1

dnyn,n+1

H(2)
p ≡ 2−1[X(1)

p

′
, Y (1)

p

′
] = hp−1 + hp+1

X(2)
p ≡ d−1

p−2[H(2)
p , V (2)

p ] = xp−2,p−1 + η(2)p xp+2,p+3

Y (2)
p ≡ [X(2)

p ,H (2)
p ] = yp−2,p−1 + η(2)p yp+2,p+3

H(2)
p

′ ≡ 2−1[X(2)
p , Y (2)

p ] = hp−2 + (η(2)p )2hp+2

X(2)
p

′ ≡ 2−1[Y (2)
p ,H (2)

p

′
] = xp−2,p−1 + (η(2)p )3xp+2,p+3

Y (2)
p

′ ≡ 2−1[H(2)
p

′
, X(2)

p

′
] = yp−2,p−1 + (η(2)p )3yp+2,p+3,

where η(2)p = dp+2/dp−2. This leads to

(η(2)p )2X(2)
p − X(2)

p

′ = [(η(2)p )2 − 1]xp−2,p−1 ∈ L
(η(2)p )2Y (2)

p − Y (2)
p

′ = [(η(2)p )2 − 1]yp−2,p−1 ∈ L.

Again, we have to consider two different cases.

Case 2a. If η(2)p 
= ±1, i.e., dp−2 
= ±dp+2, then xp−2,p−1, yp−2,p−1 ∈ L as well
as hp−2 ≡ 2−1[xp−2,p−1, yp−2,p−1] ∈ L and we can proceed as in case 1 to show that
xp−3,p−2, yp−3,p−2 ∈ L:

V (3)
p ≡ V (2)

p − dp−2yp−2,p−1,

X(3)
p ≡ d−1

p−3[hp−2, V
(3)
p ] = xp−3,p−2 ∈ L

Y (3)
p ≡ [X(3)

p , hp−2] = yp−3,p−2 ∈ L.
Repeating the last step p − 3 times shows that X(p−1)

p = x12 ∈ L and Y
(p−1)
p = y12 ∈ L and

hence xn,n+1, yn,n+1 ∈ L for 1 � n � N − 1 by lemma 1.
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Case 2b. If η(2)p = ±1, i.e., dp−2 = ±dp+2, then we have only X(2)
p = xp−2,p−1 ±xp+2,p+3 ∈ L

and Y (2)
p = yp−2,p−1 ± yp+2,p+3 ∈ L but we can proceed as in case 2 to obtain

X(3)
p

′ = xp−3,p−2 + (η(3)p )3xp+3,p+4 ∈ L
Y (3)
p

′ = yp−3,p−2 + (η(3)p )3yp+3,p+4 ∈ L
where η(3)p = dp+3/dp−3. Again, we must distinguish the cases η(3)p 
= ±1 and η(3)p = ±1 and
so forth.

Using this procedure, we can always show that xp−k,p−k+1, yp−k,p−k+1 ∈ L since by
hypothesis dp−k 
= ±dp+k . We can then proceed as in case 1 to show that x12, y12 ∈ L, from
which it follows that all xn,n+1, yn+1,n ∈ L by lemma 1. �

3. Completely controllable quantum systems

3.1. Anharmonic systems

The results of the previous section can be applied to establish complete controllability for many
quantum systems.

Theorem 1. The dynamical Lie algebra for a quantum system H = H0 +f (t)H1 with H0 and
H1 as in (2) and (4) is at least su(N) if either

(i) µ1 
= 0 and µn 
= µ1 for 2 � n � N − 1, or
(ii) µN−1 
= 0 and µn 
= µN−1 for 1 � n � N − 2.

If in addition Tr(H0) 
= 0 then the dynamical Lie algebra is u(N), i.e., the system is completely
controllable.

Proof. Suppose µ1 
= 0 and µn 
= µ1 for 2 � n � N − 1. Let V = iH1 and evaluate

V ′ ≡ [iH0, V ] =
N−1∑
n=1

µndnxn,n+1

V ′′ ≡ [V ′, iH0] =
N−1∑
n=1

µ2
ndnyn,n+1

V (1) ≡ V ′′ − µ2
N−1V =

N−2∑
n=1

(µ2
n − µ2

N−1)dnyn,n+1

V (2) ≡ [[iH0, V
(1)], iH0] − µ2

N−2V
(1) =

N−3∑
n=1

(µ2
n − µ2

N−2)(µ
2
n − µ2

N−1)dnyn,n+1

...

V (k) ≡ [[iH0, V
(k−1)], iH0] − µ2

N−2V
(k−1) =

N−1−k∑
n=1

[
N−1∏
k=n+1

dn(µ
2
n − µ2

k)

]
yn,n+1

...

V (N−2) ≡ d1

[
N−1∏
k=2

(µ2
1 − µ2

k)

]
y12 ∈ L.
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Since by hypothesis d1 
= 0, µ1 
= 0 and µn 
= µ1 for 2 � n � N − 1 we have y12 ∈ L and
hence µ−1

1 [iH0, y12] = x12 ∈ L. Hence, su(N) ⊂ L by lemma 1 and if Tr(H0) 
= 0 then
L = u(N). The proof for the case µn 
= µN−1 for 1 � n � N − 2 is analogous. �

This theorem, first proved in [7], is very important in that it guarantees the complete
controllability of physically important systems such as simple atomic systems or Morse
oscillators, which are often used to model molecular bonds.

Example 1. The energy level spacing for a Morse oscillator is of the form µn ∝ 1−Bn where
B is a small positive real number and we can assume Tr(H0) 
= 0. Therefore, µn 
= µ1 for
n > 1 and thus any N -level Morse oscillator system is completely controllable.

Theorem 1 also applies to degenerate or more complicated systems.

Example 2. Consider a system with energy levels E1 and En = E2 
= E1 for 2 � n � N with
arbitrary non-zero transition dipole moments dn. In this case we have µ1 = E2 − E1 
= 0 but
µn = 0 for 2 � n � N − 1. Thus, surprisingly, this highly degenerate system is completely
controllable by theorem 1 provided that Tr(H0) 
= 0.

Example 3. The energy levels of the bound states of a one-electron atom of atomic number Z
are En = (−13.9 eV)Z2/n2. Therefore, Tr(H0) 
= 0 and the energy level spacing is

µn ∝ n−2 − (n + 1)−2 = (2n + 1)

n2(n + 1)2
.

Note that the multiplicity of energy level En is 2n2 including angular momentum and spin
degeneracy, i.e., the energy levels are degenerate. Nevertheless, we can apply theorem 1 to
conclude that any non-decoupled N -level subsystem of this model consisting of at least two
different energy levels is completely controllable if the interaction with the control field is of
dipole form (4).

Example 4. The energy levels En for a particle in a 1D box are Cn2, where C is a positive
constant. Hence, Tr(H0) 
= 0 and µn 
= µ1 for n > 1, i.e., any non-decoupled N -level
subsystem of this model is completely controllable according to theorem 1 if the interaction
with the control field is of dipole form (4).

Example 5. Consider a (N = 2&+1)-level system with Tr(H0) 
= 0 and energy level spacings
µ2k = µ2 for 1 � k � & but µ1 
= µn for n > 1. This system is also completely controllable
(independent of the dn) according to theorem 1. Similarly, if we hadµ2k−1 = µ1 for 1 � k � &

but µ2& 
= µn for n < 2& then the system would be completely controllable according to
theorem 1 as well.

The last example is interesting for the following reason. Suppose we considered instead
a composite system of & coupled identical two-level systems with simple interactions, i.e., an
(N = 2&)-level system with energy level spacings µ2k+1 = µ1 for 1 < k < & but, for example,
µ2 
= µn for n 
= 2. In this case we have µ1 = µ2&−1, i.e., theorem 1 does not apply although
considering the last example one would expect this system to be controllable as well. This
suggests that theorem 1 can be generalized.

Theorem 2. The dynamical Lie algebra L of a quantum system H = H0 + f (t)H1 with H0

and H1 as in (2) and (4) is at least su(N) if there exists µp 
= 0 such that µn 
= µp for n 
= p,
and k such that dp−k 
= ±dp+k . If in addition Tr(H0) 
= 0 then L = u(N), i.e., the system is
completely controllable.
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Proof. Let V = iH1 and define

V (1) ≡ [[iH0, V ], iH0] − µ2
σ(1)V

V (2) ≡ [[iH0, V
(1)], iH0] − µ2

σ(2)V
(1)

...

V (N−2) ≡ [[iH0, V
(N−3)], iH0] − µ2

σ(N−3)V
(N−3)

where σ is a permutation of the set {1, 2, . . . , N − 1} such that σ(N − 1) = p. Then

V (N−2) = dp

[
N−2∏
n=1

(µ2
p − µ2

σ(n))

]
yp,p+1 ∈ L.

and since by hypothesis dp 
= 0, µp 
= 0 and µn 
= µp for n 
= p we have yp,p+1 ∈ L and
hence µ−1

p [iH0, yp,p+1] = xp,p+1 ∈ L. By hypothesis we have furthermore dp+k 
= ±dp−k for
some k. Hence, su(N) ⊂ L by lemma 2 and if Tr(H0) 
= 0 then L = u(N), i.e., the system is
completely controllable. �

Note that d0 = dN = 0 and dn 
= 0 for 1 � n � N − 1 implies that the condition
dp+k 
= ±dp−k is always satisfied for k = min{p,N − p} unless p = N − p since if
k = p < N − p then dp−k = d0 = 0 and dp+k 
= 0, and if k = N − p < p then
dp+k = dN = 0 and dp−k 
= 0. Furthermore, p = N − p is only possible if p = N/2 and
hence N even. Thus, assuming Tr(H0) 
= 0, we have the following:

Corollary 1. If N is odd and there exists µp 
= 0 such that µn 
= µp for n 
= p, then the
system is completely controllable.

Corollary 2. If N is even and there exists µp 
= 0 with p 
= N/2 such that µn 
= µp for
n 
= p, then the system is completely controllable.

Applying corollary 2 to the (N = 2&)-level composite system with energy level spacings
µ2k+1 = µ1 for 1 < k < & but µ2 
= µn for n 
= 2 considered above, we see that the system is
always controllable for N 
= 4. If N = 4 then it is controllable if d1 
= ±d3. There are many
other applications for the theorems and corollaries above.

Example 6. The system of two coupled &-level harmonic oscillators with

En =
{
E1 + (n − 1)µ for 1 � n � &

E1 + (n − 1)µ + ( for & + 1 � n � 2&
(9)

is completely controllable if d&−k 
= ±d&+k for some k sinceµn = µ for n 
= & andµ& = µ+(.
For instance, if

dn =




√
n for 1 � n � & − 1

d 
= 0 for n = &√
n − & for & + 1 � n � 2& − 1

(10)

then the system is completely controllable by theorem 2 since, e.g., d&−1 = √
& − 1 
= √

1 =
d&+1. However, if

dn =




1 for 1 � n � & − 1

d 
= 0 for n = &

1 for & + 1 � n � 2& − 1

(11)

then the system does not satisfy the criteria for complete controllability established in the
previous theorems and one can verify that the system is indeed not completely controllable.
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3.2. Harmonic oscillators

Theorem 2 and its corollaries establish complete controllability for many anharmonic, non-
decomposable quantum systems. However, the conditions on the µn exclude systems with
equally spaced energy levels, i.e., µn = µ for 1 � n � N − 1, such as harmonic oscillators.
For these systems we cannot apply the techniques used in the previous section to establish
complete controllability since in this case [[iH0, V ], iH0] = µV . To resolve this problem, we
introduce a new set of parameters depending on the values of the transition dipole moments dn

vn = 2d2
n − d2

n−1 − d2
n+1 1 � n � N − 1 (12)

which determine whether the system is completely controllable or not.

Theorem 3. The dynamical Lie algebra L for a system H = H0 +f (t)H1 with equally spaced
energy levels, i.e., µn = µ 
= 0 for 1 � n � N − 1 is at least su(N) if there exists vp 
= 0
such that vn 
= vp for n 
= p and p 
= N/2; if p = N/2 then dp−k 
= ±dp+k for some k is
required as well. If in addition Tr(H0) 
= 0 then L = u(N).

Proof. For convenience we define Y (1) ≡ iH1. Then we have

X(1) ≡ µ−1[iH0, Y
(1)] =

N−1∑
n=1

dnxn,n+1

Z ≡ 2−1[X(1), Y (1)] = i
N∑
n=1

(d2
n − d2

n−1)enn.

From X(1), Y (1) and Z(1), we have

Y (2) ≡ [Z,X(1)] − vσ(1)Y
(1) =

N−1∑
n=2

(vn − vσ(1))dnyn,n+1

X(2) ≡ [Y (1), Z] − vσ(1)X
(1) =

N−1∑
n=2

(vn − vσ(1))dnxn,n+1

Y (3) ≡ [Z,X(2)] − vσ(2)Y
(2) =

N−1∑
n=3

(vn − vσ(1))(vn − vσ(2))dnyn,n+1

X(3) ≡ [Y (2), Z] − vσ(2)X
(2) =

N−1∑
n=3

(vn − vσ(1))(vn − vσ(2))dnxn,n+1

...

Y (N−1) ≡ [Z,X(N−2)] − vσ(N−2)Y
(N−2) = dp

[
N−2∏
n=1

(vp − vσ(n))

]
yp,p+1 ∈ L

X(N−1) ≡ [Y (N−2), Z] − vσ(N−2)X
(N−2) = dp

[
N−2∏
n=1

(vp − vσ(n))

]
xp,p+1 ∈ L.

where σ is a permutation of the set {1, 2, . . . , N − 1} such that σ(N − 1) = p. By hypothesis
we have vp 
= 0 and vn 
= vp for n 
= p. Hence, we can conclude xp,p+1, yp,p+1 ∈ L. If
p 
= N/2 then the condition dp−k 
= ±dp+k is automatically satisfied for k = min{p,N − p};
otherwise it is guaranteed by the hypothesis of the theorem. Therefore, L contains su(N) by
lemma 2 and if Tr(H0) 
= 0 then L = u(N). �
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Example 7. The truncated N -level harmonic oscillator with En ∝ n + 1
2 and dn = √

n is
completely controllable since vn = 0 for 1 � n � N − 2 but vN−1 = N 
= 0.

Example 8. A system with N equally spaced energy levels, Tr(H0) 
= 0, and dn = 1 for
1 � n � N − 2 and dN−1 
= ±1 is completely controllable since v1 = 1, vn = 0 for
2 � n � N − 3, vN−2 = 1 − d2

N−1 and vN−1 = 2d2
N−1 − 1 
= 0, i.e., v1 
= vn for n > 1.

4. Limits of complete controllability

The theorems and corollaries in section 3 suggest that many non-decomposable quantum
systems are completely controllable and one might actually begin to wonder if there are
any non-decomposable (i.e., non-decoupled) systems that are not completely controllable.
Unfortunately, the answer is yes, and worse yet, these systems may look very similar to
completely controllable systems. Recall example 6, i.e., a system with energy levels (9),
which satisfies the conditions for complete controllability of theorem 2 if the transition dipole
moments are chosen as in (10) but does not satisfy the criteria for complete controllability if
the dn are chosen as in (11). We shall see that for the latter choice of the transition dipole
moments dn the system is indeed not completely controllable.

Theorem 4. The dynamical Lie algebra for a system with N equally spaced energy levels
µn = µ for 1 � n � N −1 and vn = v for 1 � n � N −1 has dimension four, i.e., the system
is not completely controllable for N > 2.

Proof. Let Y = iH1,

X ≡ µ−1[iH0, Y ] =
N−1∑
n=1

dnxn,n+1

Z ≡ 2−1[X, Y ] = i
N∑
n=1

(d2
n − d2

n−1)enn

and note that we have the following commutation relations

[iH0, X] = µY [iH0, Y ] = −µX [iH0, Z] = 0

[X, Y ] = 2Z [Z,X] = −v1Y [Z, Y ] = v1X.

Hence, iH0, X, Y, Z span the Lie algebra L. Thus L is isomorphic to the four-dimensional Lie
algebra u(2), i.e., the system is not completely controllable for N > 2. �

Example 9. If N = 3 and µ1 = µ2 as well as d1 = d2 then the system is not completely
controllable since v1 = 2d2

1 − d2
2 = 2d2

2 − d2
1 = v2, i.e., the Lie algebra has dimension four

according to the previous theorem.

Theorem 4 has another important implication. One can prove by induction that for N > 4
the condition vn = v for 1 � n � N − 1 can only be satisfied if

d2
n = nd2

1 − n(n − 1)

2
v and v = 2

N − 4
d2

1 .

Note that v → 0 and thus dn → nd2
1 for N → ∞. Hence, the infinite-dimensional harmonic

oscillator with dn = √
n for 1 � n � ∞ is not completely controllable.

Theorem 5. A system with N equally spaced energy levels and dn = 1 for 1 � n � N − 1 is
not completely controllable for N > 2.
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Proof. Note that theorem 3 does not apply since v1 = vN−1 = 1 and v2 = · · · = vN−2 = 0.
Setting

Z1 = i(e11 − enn)

X1 = µ−1[iH0, iH1] =
N−1∑
n=1

xn,n+1

leads to [Z1, X1] = y12 + yN−1,N ∈ L. Thus, we have the following reduced problem:

iH0 iH(1)
1 = iH1 − [Z1, X1] =

N−2∑
n=2

yn,n+1

and we can use induction to prove the theorem. One can easily verify that the system is not
completely controllable if N = 3 (see example 9) or N = 4 (see section 5.1). Suppose the
theorem is true for N > 2. We want to prove it is also true for N + 2. To this end, assume
that the theorem is not true, i.e., that the (N + 2)-level system is completely controllable.
Then we can use the above procedure to reduce the system to an N -level system. Clearly, this
reduced N -level system must be completely controllable, which contradicts the assumption.
This means that the assumption is false. �

5. Classification of complete controllability for four-level systems

In this section we apply the results of sections 3 and 4 to give a classification of the complete
controllability problem for four-level quantum systems whose interaction with the control field
is determined by (4).

According to theorem 2 and its corollaries, a non-decomposable four-level quantum system
is completely controllable if Tr(H0) 
= 0 and one of the following conditions apply:

(i) µ1 
= µ2 
= µ3;
(ii) µ1 
= µ2 = µ3;

(iii) µ1 = µ2 
= µ3; or
(iv) µ1 = µ3 
= µ2, µ2 
= 0 and d1 
= ±d3.

Furthermore, if µ1 = µ2 = µ3 
= 0 then the system is completely controllable according to
theorem 3 if either

(i) v1 
= v2, v1 
= v3; or
(ii) v3 
= v1, v3 
= v2.

Decomposable systems (and traceless systems) are not completely controllable. Hence, the
only cases that remain to be considered are the following.

5.1. Case µ1 = µ3 
= µ2, µ2 
= 0, d1 = ±d3

In this case the system is not completely controllable and we actually have an 11-dimensional
Lie algebra isomorphic to sp(2) ⊕ u(1). To see this, note that sp(2) is spanned by [6]

h1 ≡ i(e11 − e33) h2 ≡ i(e22 − e44)

x2ω1 ≡ x31 y2ω1 ≡ y31

x2ω2 ≡ x42 y2ω2 ≡ y42

xω1+ω2 ≡ x32 + x41 yω1+ω2 ≡ y32 + y41

xω1−ω2 ≡ x21 − x34 yω1−ω2 ≡ y21 − y34

(13)
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and if d1 = ±d3 then the change of basis

{|1〉, |2〉, |3〉, |4〉} �→ {|2〉, |1〉, |3〉,∓|4〉}
leads to

H0 = 1
4 Tr(H0)I − (µ1 + µ2/2)h1 + µ2h2

H1 = d1yω1−ω2 + d2y2ω1

and one can easily check that H ′
0 = µ1h1 + µ2h2 and H1 generate all of sp(2). Hence,

L � sp(2) ⊕ u(1).

5.2. Case µ1 = µ3 
= µ2, µ2 = 0

X1 ≡ µ−1
1 [iH0, iH1] = d1x12 + d3x34

Y1 ≡ µ−1
1 [iH0, X1] = d1y12 + d3y34

Z1 ≡ 2−2[X1, Y1] = i[d2
1 (e11 − e22) + d2

3 (e33 − e44)].

Then we have

Y2 ≡ d−1
2 (iZ1 − Y1) = y23 ∈ L

X2 ≡ (d2
1 + d2

2 )
−1[Z1, Y2] = x23 ∈ L.

According to lemma 2, the system is completely controllable if d1 
= ±d3. For d1 = ±d3, the
Lie algebra generated is the 11-dimensional Lie algebra given in the previous section, i.e., the
system is not completely controllable.

5.3. Case µ1 = µ2 = µ3, v1 = v3, v2 
= v1

From the definition of vn we obtain that the condition v2 
= v1 = v3 is equivalent to
d2

2 
= d2
1 = d2

3 , which implies d1 = ±d3. One can easily verify that L is the 11-dimensional
algebra given in section 5.1. Hence, the system is not completely controllable.

5.4. Case µ1 = µ2 = µ3, v1 = v2 = v3

In this case one can easily verify that iH0 and iH1 generate a Lie algebra of dimension four
isomorphic to u(2). Hence, the system is not completely controllable. Note that v1 = v2 = v3

is equivalent to d2
3 = d2

1 = 3
4d

2
2 . (See also theorem 5.)

5.5. Case µ1 = µ2 = µ3 = 0

This is a completely degenerate system (E1 = E2 = E3 = E4) and L is a two-dimensional
Lie algebra with basis iH0 = iI and iH1. Clearly, the system is not completely controllable.

6. Conclusion

In this paper we studied the problem of complete controllability of finite-level non-
decomposable quantum systems whose interaction with a semi-classical field is governed
by the dipole approximation. We reduced the problem of complete controllability of these
systems to the question whether a pair of skew-Hermitian matrices xnn+1 and ynn+1 can be
generated by iH0 and iH1. Using these criteria, we showed that many non-decomposable
finite-level quantum systems are completely controllable, including many atomic systems as
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well as Morse and harmonic oscillator systems. We also showed, however, that complete
controllability is by no means a universal property of the types of systems under consideration
and that in fact many systems lacking complete controllability may appear superficially very
similar to completely controllable ones. Finally, we applied our results to give a classification
of four-level systems in terms of complete controllability, as presented in table 1.

Table 1. Complete controllability for four-level harmonic and anharmonic oscillator systems.

Complete
System µn dn(
= 0)

controllability

Anharmonic µ1 
= µ2 
= µ3 Yes
µ1 
= µ2 = µ3 Yes
µ1 = µ2 
= µ3 Yes
µ1 = µ3 
= µ2 d1 
= d3 Yes

d1 = d3 No

Harmonic µ1 = µ3 = µ3 
= 0 v1 
= v2 
= v3 Yes
v1 
= v2 = v3 Yes
v1 = v2 
= v3 Yes
v1 = v3 
= v2, d1 = ±d3 No
v1 = v2 = v3 No

µ1 = µ3 = µ3 = 0 No
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